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1 Introduction and summary

Consider a system of electrically charged massive scalars and massive fermions of the oppo-

site charge at high densities. When the interparticle separation is small, or the temperature

of the system is high, neutral fermion-boson bound states will be unable to form. At high

temperatures the equilibrium state of the system is a plasma. As the system cools below

a certain critical temperature, the energy of the Coulomb interactions will significantly

exceed the thermal energy, and the ionized system can crystallize. However, in certain

cases the de Broglie wavelengths of the scalars begin to overlap before the crystallization

temperature is reached. In this case, instead of crystallizing, the quantum-mechanical

probabilistic “attraction” of the bosons can force the scalars to undergo condensation into

a zero-momentum macroscopic state of large occupation number. The scalars minimize

their kinetic energy, while phonons can not be thermally excited since the phonon mass

gap — produced by this condensate — happens to be greater than the corresponding

temperature. Therefore, after the phase transition all the thermal energy is stored in the

near-the-Fermi-surface gapless excitations of quasi-fermions. We refer to this state as a

charged condensate [1–3].

This condensation mechanism is different from that of the abelian Higgs model, or

equivalently, the relativistic Ginzburg-Landau theory of superconductivity — the scalar

field in our case has a conventional positive-sign mass term. A nonzero expectation value

for the electric potential 〈A0〉, or a nonzero chemical potential for the scalars, plays the role

of the tachyonic mass, enabling the scalar field to acquire a vacuum expectation value [4].

The condensation mechanism is generic: the electromagnetic interaction can easily be

generalized to any U(1) abelian interaction, and the scalar field could be a fundamental

field or a composite state.

– 1 –
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In this work we argue that the charged condensate has properties somewhat similar

to type II superconductors. In particular, we show that it can admit solutions that are

similar to the Abrikosov vortices [5], originally found in the Ginzburg-Landau model of

superconductivity, and later recovered in the relativistic abelian Higgs model in [6]. The

vortex solution is a topologically stable configuration, characterized by a nonzero winding

number of the phase of the complex scalar field. Asymptotically, the scalar field is given

by φ ∼ veiθ, where v is the vacuum expectation value of the field and θ is the azimuthal

coordinate. Like the Abrikosov vortex, the charged condensate vortex carries a quantized

magnetic flux. The vortex solution has a higher energy density than the pure condensate

solution. However, in the presence of a sufficiently high external magnetic field, it becomes

energetically favorable for the charged condensate to form vortices.

The obtained vortex line solution exhibits the following structure: it has a narrow

cylindrical core where the scalar field changes significantly from a nonzero to a zero value;

this core is surrounded by a broad halo in which the magnetic flux is confined. The width

of the latter region is determined by the penetration depth (i.e., the photon Compton

wavelength). We refer to the system of the core and the halo as the flux-tube, or the

vortex line. This structure is similar to that of the Abrikosov solution. However, unlike

the latter, our solution also carries a profile of the electrostatic potential within the halo,

while this potential is exponentially small outside of the halo (i.e., the flux tube is charge

neutral). Hence, in terms of differential equations, one has to solve three coupled equations

instead of the two required in the Abrikosov [5], or Nielsen-Olesen cases [6].

One application of the charged condensate is to helium-core white dwarf stars. The

cores of these dwarfs are composed of a highly dense system of helium-4 nuclei and elec-

trons. At high temperatures, the electrons and nuclei form a plasma. While white dwarf

stars composed of carbon, oxygen or heavier elements are expected to crystallize as they

cool [7], it was argued in refs. [2, 3] that the helium-4 nuclei would instead form the charged

condensate, as the condensation temperature in the helium dwarfs is higher than the tem-

perature at which the system would crystallize. This transition dramatically affects the

cooling history of the helium-core white dwarfs. In fact, they cool faster; as a result, the

luminosity function exhibits a sharp drop-off below the condensation temperature [3]. Such

a termination in the luminosity function may have already been observed in a sequence of

the 24 helium-core white dwarf candidates seen in NGC 6397 [8].

The above conclusions were obtained by considering white dwarfs that are not magne-

tized. Magnetized helium-core dwarf stars are also believed to exist; in magnetized white

dwarf stars, surface magnetic fields have been detected ranging from 103 to 109 Gauss. If

this is the case, it is important to know how the presence of a magnetic field would affect

the above-described properties of the charged condensate.

In analogy with type II superconductors, we would expect an external magnetic field

to be entirely expelled from the charged condensate below a certain critical value of the

field Hc1. Above this value, however, we’d expect to have a mixed phase in which the

magnetic field penetrates the charged condensate only in the form of the Abrikosov-like

vortices. Finally, above a certain Hc2 > Hc1 the magnetic field should entirely destroy the

charged condensate.
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Indeed, this is the pattern that we find in the present work. The corresponding values of

the critical magnetic fields in the interior of helium-core white dwarfs are: Hc1 ≃ (107−109)

Gauss, and Hc2 ≃ (1013 −1015) Gauss, while in between these two scales we find quantized

magnetic vortices permeating the bulk of helium-core dwarf stars. Hence in most of the

magnetized helium white dwarfs the magnetic field will be expelled from the core in which

the charged condensation has taken place. It’s only the highly magnetized dwarfs, with

fields ∼ (107 − 109) Gauss, that can admit vortices. Also, since the value of Hc2 ≃
(1013 − 1015) Gauss is much higher that any magnetic field that may be present in dwarf

stars, there will be no disruption of the charged condensate due to magnetic fields.

The presence of the magnetic field would decrease the critical temperature at which

the charged condensation would take place. However, this decrease will be significant only

for the fields H close to the critical ones. For smaller fields, the change in the value of the

critical temperature will be small ∆Tc ∼ −Tc(H/Hc).

The organization of this paper is as follows: In section 2 we briefly describe the conden-

sation mechanism for a generic system of scalars and fermions in the context of relativistic

field theory. In section 3 we fix the phase of the scalar field to be of the vortex-type and

solve the corresponding equations of motion. We compare our solutions to those found in

the abelian Higgs model. In section 4 we consider corrections to our solutions due to the

dynamics of the fermions. In section 5 we consider the effects of an external magnetic field

on the charged condensate and determine the magnitude of the external field for which it

becomes energetically favorable to form vortices. In section 6 we treat specifically the case

of helium-4 nuclei and electrons. We describe the system in the context of a non-relativistic

low energy effective field theory, rather than the relativistic field theory used in the previ-

ous sections. We discuss the applicability of the vortex solutions found in section 4 to the

helium-4 nuclei and electron system. We also consider the effect of a constant rotation on

the condensate of helium-4 nuclei.

2 Charged condensate: relativistic Lagrangian

We start by considering a generic, highly dense system of charged, massive scalars and

oppositely charged fermions. We assign a charge of +2e to the scalars and −e to the

fermions in anticipation of the helium-4 nuclei and electron system to be discussed later in

section 6. However, for now we keep our considerations general. The scalar field considered

below could be any fundamental scalar field, possibly originating in beyond-the-standard-

model physics. Our conclusions are independent of the specific charge assignment.

The scalar condensate is described by the order parameter φ. A nonzero vacuum

expectation value of φ implies that the scalars are in the condensate phase. Here we adopt

a relativistic Lorentz-invariant Lagrangian which contains the charged scalar field φ, and

the photon field Aµ. The fermion current is given by Jµ.

L = −1

4
F 2

µν + |Dµφ|2 − m2
Hφ∗φ − eAµJµ . (2.1)

The covariant derivative for the scalars is defined as Dµ ≡ ∂µ − 2ieAµ.

– 3 –
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The above Lagrangian could also contain a quartic interaction λ(φ∗φ)2. In the case that

m3
H ≫ λJ0, this term will not alter significantly our results. A Yukawa interaction between

fermions and scalars is forbidden by the symmetries of the theory. Other possible terms

were considered in ref. [1]. For now we treat the fermions as a fixed, constant background

charge density Jµ = J0δµ0. We will relax this assumption in section 4 and consider effects

due to the dynamics of the fermions and quantum loops of relativistic fermions. For

simplicity we take the system to be at zero temperature (for some discussions of finite

temperature effects see, [3]).

Because the system has a conserved scalar current, we can associate with it a chemical

potential µs. For the Hamiltonian density, the inclusion of a chemical potential for the

scalars results in the shift H → H′ = H−µsJ
scalar
0 , where J scalar

0 ≡ −i[(D0Φ)∗Φ−Φ∗(D0Φ)]

is the time component of the conserved scalar current. For the Lagrangian density this

shift can be written as a shift in the covariant derivative Dµ → D′
µ = Dµ − iµsδµ0. In

what follows primed variables H′, L′ will refer to those variables which include a nonzero

chemical potential for the scalars.

The complex order parameter φ can be written in terms of a modulus and a phase

φ = 1√
2
σ eiα. In these variables the Lagrangian density becomes

L′ = −1

4
F 2

µν +
1

2
(∂µσ)2 +

1

2
(2eAµ + µsδµ0 − ∂µα)2 σ2 − 1

2
m2

H σ2 − eAµJµ . (2.2)

From this form of the Lagrangian it is evident that a nonzero expectation value for A0 or

a nonzero chemical potential µs act as a tachyonic mass for the scalars [4]. In particular,

when 〈2eA0〉 + µs = mH , the scalar field condenses, as we shall now show.

Varying the Lagrangian with respect to Aµ and σ gives the following equations of

motion:

− ∂µFµν = 2e(2eAν + µsδν0 − ∂να)σ2 − eJν , (2.3)

� σ = [(2eAµ + µsδµ0 − ∂µα)2 − m2
H ]σ . (2.4)

Varying with respect to α gives the conservation of the scalar current:

∂µJ scalar
µ = ∂µ

[

(2eAµ + µsδµ0 − ∂µα)σ2
]

= 0. (2.5)

On equation of motion (2.3) this expression is automatically satisfied.

We now work in the unitary gauge where the phase of the scalar field is set to zero:

α = 0. Note that this gauge choice is acceptable for a classical description of the condensate,

however, in subsequent sections we will not be able to choose this gauge for the vortex

solution for a well-known reason: in order to take α = θ to 0, the corresponding gauge

transformation Aµ → Aµ + ∂µθ would be singular at the origin where the vortex core is

located.

In the unitary gauge the equations of motion (2.3), (2.4) have the following static

solution with a nonzero expectation value for σ:

〈2eA0〉 + µs = mH , 〈σ〉 =

√

J0

2mH
. (2.6)

– 4 –
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In the condensate the gauge symmetry is spontaneously broken. The photon acquires

a mass

mγ = 2e

√

J0

2mH
. (2.7)

This mechanism of symmetry breaking differs from the abelian Higgs model in that here

the scalar field has a conventional positive-sign mass term. A nonzero expectation value

for A0 or a nonzero chemical potential µs act as a tachyonic mass term. If we consider a

system with no net charge then 〈A0〉 = 0. Then, from expression (2.6), in order for the

scalar field to condense the chemical potential must satisfy µs = mH . The bulk of the

condensate is always electrically neutral, the scalar charge density exactly canceling the

fermion charge density: 2eJ scalar
0

= (〈2eA0〉 + µs)〈σ2〉 = eJ0.

3 Vortices in charged condensate

To find the charged condensate solution (2.6), we fixed the phase of the scalar field to zero.

We now consider a configuration where the phase is not set to zero, nor can it be set to zero

everywhere by a non-singular gauge transformation. The requirement that the scalar field

be single-valued everywhere is satisfied by demanding that the change in phase around a

closed loop be an integer multiple of 2π. In a system with cylindrical symmetry, this is

satisfied by setting α = nθ, where θ is the azimuthal coordinate and n is an integer. This

phase can be removed everywhere by a gauge transformation Aµ → Aµ + ∂µ(nθ), except

at the origin where the scalar VEV goes to zero and the gauge transformation would be

singular. The solutions of the equations of motion (2.3), (2.4) where the phase is fixed to

α = nθ are vortex-type solutions.

Hence, σ = 0 at the origin r = 0 (where r is the 2D radial coordinate). Far from

the origin however, we expect the solutions to recover the condensate solutions (2.6). At

large r then, the gauge field takes the form 2eAj → ∂jα, or equivalently Aθ → n/(2er).

From this form of the vector potential, it follows that this configuration has a quantized

magnetic flux Φ that is related to the integral of Aj around a closed loop at infinity:

Φ =

∮

A·dl =

∮

Aθrdθ =
2πn

2e
. (3.1)

The magnetic flux is quantized in units of n. The quantization of flux implies the stability

of the vortex configuration, although it may be possible for a high n vortex to decay into

multiple vortices of smaller n.

To solve the equations of motion (2.3), (2.4) for the vortex configuration we switch

notation to dimensionless variables. The resulting equations are governed by a single

parameter κ, the ratio of the mass of the scalar to the mass of the photon in the condensate:

κ = mH/mγ . This parameter κ is the equivalent to the Ginzburg-Landau parameter in the

theory of superconductors which gives the ratio of the penetration depth to the coherence

length. For the helium white dwarf star, if we take the mass of the helium-4 nuclei to be

roughly mH = 3.7 GeV and the electron density to be J0 ∼ (0.15 − 0.5 MeV)3, then we

have κ ∼ 106. In our derivations below we frequently take the large κ limit.

– 5 –
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We define x ≡ mγr, set Ar = Az = 0 and µs = mH , and perform the following change

of variables:

mγA(x) ≡ 2exAθ(x) , (3.2)

mγF (x) ≡ 2eσ(x) , (3.3)

mHB(x) ≡ µs + 2eA0(x) . (3.4)

In terms of these new variables equations of motion (2.3), (2.4) become

x
d

dx

(

1

x

dA

dx

)

= F 2(A − 1) , (3.5)

−1

x

d

dx

(

x
dF

dx

)

=

[

κ2(B2 − 1) − n2

x2
(A − 1)2

]

F , (3.6)

1

x

d

dx

(

x
dB

dx

)

= F 2B − 1 . (3.7)

The boundary conditions are set by requiring that the solutions asymptote to the conden-

sate solutions for large r, while for r = 0 we have Aθ = σ = dA0/dr = 0:

For x → 0 : A(x) → 0, F (x) → 0, dB
dx → 0 .

For x → ∞ : A(x) → 1, F (x) → 1, B(x) → 1 .
(3.8)

We can compare these expressions to those obtained in the usual abelian Higgs model.

Suppose that instead of Lagrangian (2.2) we had the abelian Higgs Lagrangian:

LAH = −1

4
F 2

µν +
1

2
(∂µσ)2 +

1

2
(2eAµ − ∂µα)2 σ2 − λ

4
(σ2 − v2)2 . (3.9)

Using the same change of variables as above and defining mAH
H =

√
λv, mAH

γ = 2ev, the

equations of motion are:

x
d

dx

(

1

x

dA

dx

)

= F 2(A − 1) , (3.10)

−1

x

d

dx

(

x
dF

dx

)

=

[

κ2(1 − F 2) − n2

x2
(A − 1)2

]

F . (3.11)

The equation of motion for the vector potential, expressed via A, is the same as in the

charged condensate model. In the equation for the scalar field, the σ4 term in the abelian

Higgs model gets replaced in the charged condensate model by a term that depends on the

electric potential. In addition, in the charged condensate equations the electric potential

is generally not zero and not constant and has its own equation to satisfy.

Let us first examine the asymptotic behavior of the solutions to the condensate equa-

tions for x → ∞. Far from the origin we expect the fields to be very close to their

condensate values. Then, on the r.h.s. of equation (3.5), it follows that A(x) − 1 ≡ a(x)

is very small. If we consider this equation only to first order in small fields then we can

approximate the scalar field on the r.h.s. of (3.5) as F ≃ 1. The solution for A that obeys

the appropriate boundary conditions is

A(x) = 1 − caxK1(x) . (3.12)

– 6 –
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Here ca is a constant to be determined by the matching of the solutions and K1(x) is the

modified Bessel function of the second kind. In the large x limit this solution for A becomes

A(x) → 1 − ca

√

πx

2
e−x . (3.13)

To find the asymptotic behavior of B and F we expand these fields in terms of pertur-

bations above the condensate values, B(x) = 1+ b(x) and F (x) = 1+f(x), and we assume

that b(x), f(x) ≪ 1. We then substitute these expressions as well as expression (3.13)

into the equations for B and F and keep only terms linear in the perturbations b(x) and

f(x). These two equations can be combined to obtain a fourth order differential equation

for b(x). Using the ansatz b(x) = cb xs e−kx where cb, s, and k are as yet undetermined

constants, we can find the particular and homogeneous solutions for b(x) in the large x

limit. We also take ca ≃ 1 which we will justify later. For the particular solution we find

bp(x) =
πn2

4(κ2 + 3)

e−2x

x
. (3.14)

For the homogeneous solution we deduce s = −1/2 and k2 = (1 ±
√

1 − 16κ2)/2. In the

limit that κ is very large, the solution becomes

bh(x) =
e−

√
κx

√
x

[

c1 sin(
√

κx) + c2 cos(
√

κx)
]

, (3.15)

with some constants c1 and c2. The complete solution is then

B(x) = 1 +
πn2

4(κ2 + 3)

e−2x

x
+

e−
√

κx

√
x

[

c1 sin(
√

κx) + c2 cos(
√

κx)
]

. (3.16)

The solution for F (x) can be found once B(x) is known:

F (x) = 1 +
3πn2

8(κ2 + 3)

e−2x

x
− κe−

√
κx

√
x

[

c1 cos(
√

κx) − c2 sin(
√

κx)
]

. (3.17)

Here c1 and c2 are the same integration constants that appear in the expression for B(x).

As κ is large, the second term in the above expressions for B and F dominates the

asymptotic behavior. For x → ∞ we have

B(x) → 1 +
πn2

4(κ2 + 3)

e−2x

x
, (3.18)

F (x) → 1 +
3πn2

8(κ2 + 3)

e−2x

x
. (3.19)

The asymptotic behavior for the vector potential and the scalar field are similar to that

for the abelian Higgs model:

AAH(x) = 1 − ca

√

πx

2
e−x , FAH(x) = 1 − c2

aπn2

4(κ2 − 2)

e−2x

x
+ cf

e−
√

2κx

√
x

. (3.20)
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The vector potential A, and thus the magnetic field, are the same in both the charged

condensate and abelian Higgs models. The asymptotic behavior of the scalar field in the

abelian Higgs model in the large κ limit is dominated by the e−2x term, as in the charged

condensate model.

Notably, this is not the asymptotic behavior for the Abrikosov vortex given in the

Nielsen-Olsen paper [6]. This discrepancy was first pointed out by L. Perivolaropoulos

in [9]. The incorrect asymptotic behavior is obtained if one similarly expands A(x) as

A(x) = 1 + a(x) and only keeps terms linear in a(x). This is because the last term in (3.6)

and the last term in (3.11) are quadratic in a(x) and yet, due to the different exponential

dependence of the perturbations a(x), b(x) and f(x), these terms can be dominant over

terms which are linear in b(x) and f(x). Linearizing A gives the correct asymptotic behavior

of the fields only in the limit that κ is small.

The second term in the full expressions for B and F and thus the asymptotic behavior

of both fields is due strictly to the presence of a nonzero magnetic field. In the absence

of any magnetic field, the screening of any small perturbation of the fields above their

condensate values vanishes as e−
√

κx = e−
√

mHmγr (see ref. [2]).

The above asymptotic expressions are valid as long as x ≫ 1, or equivalently r ≫ 1/mγ .

We consider now the intermediate region 1/
√

κ ≪ x ≪ 1, or equivalently 1/M ≪ r ≪ 1/mγ

where for convenience we have defined M ≡ √
mHmγ . At distances much larger than 1/M

we assume that the scalar field F is still close to its condensate value. Thus expression (3.12)

is still valid for A. In this regime then n2/x2(A − 1)2 ≃ n2/x2. The equations for B and

F become

1

x

d

dx

[

x
dB

dx

]

= F 2B − 1 ,
1

κ2

[

1

x

d

dx

(

x
dF

dx

)

− n2

x2
F

]

= (1 − B2)F . (3.21)

The solutions are straightforward to find:

B(x) =

(

1 +
n2

κ2x2

)1/2

, F (x) =

(

1 − n2

2κ2x2
+

2n2

κ2x4

)1/2

. (3.22)

Alternatively, we can once again expand B and F above their condensate values, B(x) =

1 + b(x) and F (x) = 1 + f(x), and solve for b(x) and f(x). The homogeneous solutions

for b(x) and f(x) are the same as those given above with the same coefficients c1 and c2.

Solving for the particular solutions gives the full solutions in the linearized approximation:

B(x) = 1 +
n2

2κ2x2
+

e−
√

κx

√
x

[

c1 sin(
√

κx) + c2 cos(
√

κx)
]

, (3.23)

F (x) = 1 − n2

4κ2x2
+

n2

κ2x4
− κe−

√
κx

√
x

[

c1 cos(
√

κx) − c2 sin(
√

κx)
]

. (3.24)

The coefficients c1 and c2 are needed to perform the matching. However, as we’ll see below,

these coefficients will turn out not to be exponentially large, and hence solutions (3.23)

and (3.24) approximate well the solutions in (3.22).

The approximations made to find both the homogeneous and particular solutions break

down as x approaches 1/
√

κ. Moreover, f(x) becomes of order 1 at x ∼ 1/
√

κ and thus

the linear approximation in general no longer holds below this scale.

– 8 –
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Finally, we’d like to solve in the r → 0 limit. Before we do so, however, we emphasize

that validity of this procedure needs some justification. The interparticle separation is

given by d ∝ J
−1/3

0
. This corresponds to x ∝ 1/κ1/3. At distances shorter than this x

we expect that an effective field theory would break down and thus it would make little

physical sense to solve the equations (3.5), (3.6) and (3.7) in this regime. Moreover, the

scale 1/M is typically shorter than the interparticle separation d, hence, particles at these

scales cannot in general be modeled by a smooth distribution.

However, both fermions and bosons are in a condensate state in which the location

of individual particles has uncertainties much greater than the interparticle separation.

Hence the latter notion loses its meaning as a microscopic characteristic of the system. For

this, we’ll still approximate particle distributions by smooth functions all the way down to

the scale ∼ 1/M , which is a dynamically determined short-distance scale at which weakly

coupled expansion breaks down [1]. As to solving at scales less that 1/M , we regard this as

a purely mathematical exercise aimed at finding the matching of the asymptotic solutions

for the corresponding differential equations for all values of the coordinate x.

Taking A, B, and F to be series expansions in small x obeying the appropriate bound-

ary conditions, the solutions to (3.5), (3.6) and (3.7) are

A(x) = a0x
2 − f2

0

8
x4 , (3.25)

B(x) = b0 −
x2

4
, (3.26)

F (x) = f0

[

x − 1

8

(

κ2(b2
0 − 1) + 2a0

)

x3

]

. (3.27)

For simplicity we have solved for the case that the winding number n = 1.1 The coefficients

a0, f0, and b0, as well as the coefficients ca, c1, and c2 can be determined by matching the

above solutions to those in the intermediate region, given by (3.12), (3.23) and (3.24).

To determine the physically appropriate matching radius, we first use Gauss’s law to

find the charge of the vortex solution. The number density of fermions in the vortex J0

is constant and is the same as the number density of fermions in the normal condensate

phase. We have fixed it so by hand, but will justify this later. The scalar number density

is given by 1

2
J0BF 2 and varies as a function of x. Therefore it is not in general equal

to its condensate value 1

2
J0. The variation of the scalar number density away from its

condensate value can lead to a net charge density of the vortex core within the vortex halo.

In particular, there are two competing effects. In the intermediate region 1/
√

κ ≪ x ≪ 1,

both B and F are above their condensate values, thus the scalar number density is greater

than the scalar number density in the condensate. As x → 0, however, F → 0 and

the scalar number density drops to zero, significantly below the condensate value. The

matching radius should be chosen so that these two effects combine to give the appropriate

charge density as determined by Gauss’s law.

1For n 6= 1, the leading term in the expansion for F will be ∝ x
n. The expression for B(x) remains

unchanged and the leading term in the expansion for A(x) = a0x
2 is also the unchanged.
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From Gauss’s law we can calculate the the average charge density of the vortex inside

radius x = 1. As is usually the case, we can determine the net charge enclosed in a region

knowing only the form of the potential at the boundary of that region. Equation (3.22)

gives the potential in the intermediate region independent of matching coefficients c1 and

c2. This form of the potential, together with Gauss’s law, allows us to calculate the net

charge of the vortex at x = 1 independent of the matching conditions and the x → 0

solutions.

Gauss’s law is given by equation (2.3):

∇2A0 = 2e(2eA0 + µs − α̇)σ2 − eJ0 . (3.28)

The r.h.s. of the above equation is the charge density. Integrating both sides of the above

expression over the volume of the vortex and dividing by the total volume gives the average

charge density inside distance x:

Qenc

V
= 2eJ0

1

x

dB

dx
. (3.29)

Here V is the volume equal to the length of the vortex times the cross-sectional area and

the r.h.s. is evaluated at the boundary of the vortex. Using expression (3.22) for B(x)

at x = 1, the average charge density inside x = 1 is Qenc/V = −2eJ0/κ
2. The negative

sign indicates a dearth of scalars in this region, but, as κ is very large, this is a small

correction to the overall average charge density of scalars ∝ eJ0. To check this result one

can likewise use the asymptotic solution for B, expression (3.16), at x = 1. Assuming that

the coefficients c1 and c2 are not exponentially large and thus these terms are not dominant

in the solution for B at x = 1, one finds Qenc/V ∝ −2eJ0/κ
2. This is consistent with the

previous result. Farther out, B(x) − 1 is exponentially suppressed thus the net charge of

the vortex approaches zero as x becomes large.

We can now use this result to determine the matching radius R. Given the smallness

of the average charge density found inside x = 1, the excess of scalars in the intermediate

region of the vortex must cancel the shortage of scalars in the x → 0 region to great

accuracy. Using expressions (3.22) for B and F , it can be shown that this happens when

R ≃ 1/
√

κ. Thus we use this as our matching radius R in what follows.

We start by matching the solution for A(x) in (3.25) and its first derivative with its

solution in the intermediate region (3.12). Taking the matching radius to be small, R ≪ 1,

gives:

a0 = −1

2

[

γ + ln

(

R

2

)]

, ca = 1 +
R2

4
, (3.30)

where γ is the Euler-Mascheroni constant. As long as R is less than one, a0 is positive.

Moreover, we see that we were justified in taking ca ≃ 1 in our previous calculations. The

magnetic field is given by

H =
m2

γ

2e

1

x

dA

dx
. (3.31)
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1

M
d

r

0.5

1

FHrL

(a) Scalar field as a function of radius

1

M
d

r

1

Κ

7

4 Κ

BHrL-1

(b) Potential as a function or radius

Figure 1. Small r solutions for the scalar field and electric potential.

Near the origin the magnetic field is of order m2
γ/(2e). For x > 1/

√
κ it is given by

m2
γK0(x)/(2e), where K0(x) is the modified Bessel function. For x ≫ 1, i.e. for r ≫ 1/mγ ,

the magnetic field is exponentially small.

To find the remaining coefficients, we use a0 obtained above and match (3.26) and (3.27)

and their first derivatives to the appropriate solutions in the intermediate region (3.23),

(3.24). We now take the matching radius to be R = 1/
√

κ. The solution with the lowest

energy is one in which the scalar field F (x) is identically zero in the region x < R. The

corresponding coefficients are

b0 = 1 +
7

4κ
, c1 = κ−5/4 e (2 cos(1) + sin(1)) , (3.32)

f0 = 0 , c2 = κ−5/4 e (cos(1) − 2 sin(1)) . (3.33)

In figure 1, the fields are plotted for small r and for κ ∼ 106. The radius r = 1/M

corresponds to the matching radius x = R = 1/
√

κ. The radius r = d denotes the

interparticle separation d = J
−1/3

0
. Unlike the magnetic field, the potential and scalar

field approach their condensate values for x > 1/
√

κ. This is in contrast to the abelian

Higgs model in which the scalar field is close to its condensate value for x > 1/κ, i.e. for

r > 1/mH .

4 Fermion dynamics

In our discussions above we have treated the fermions as a fixed charge background

Jµ = J0δµ0. We relax this assumption now and introduce dynamics for the fermions via

the Thomas-Fermi approximation. The fermion dynamics are governed by the constant

chemical potential µF :

µF =
√

p2
F (x) + m2

e + eA0(x) . (4.1)

The local number density of fermions is determined by the Fermi momentum: J0(x) =

p3
F (x)/(3π2). In this way the number density of the fermions J0 gets related to the electric
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potential A0. For relativistic fermions

J0(x) ≃ 1

3π2
(µF − eA0(x))3 . (4.2)

The chemical potential gets fixed by the value of the fermion number density in the con-

densate phase, where 〈A0〉 = 0. If J̄0 represents the number density of fermions in the

condensate, then µF = (3π2J̄0)
1/3. The photon mass mγ is also defined in terms of J̄0:

mγ ≡ 2e
√

J̄0/2mH . In the vortex phase J0(x) → J̄0 for large x.

To include the effects of an x-dependent J0 into our equations, (4.2) gets incorporated

into the equations of motion (2.3). As a result the equation of motion for B(x) (3.7)

gets modified. In the linearized equations, the effect is the addition of a new term for

b(x) with a coefficient which scales as ∝ mH/µF . However, it turns out that this new

term does not contribute significantly to the solutions. This is because, in the fourth

order differential equation for b(x), terms with coefficient mH/µF ∝ κ2/3 are subdomi-

nant compared to terms with coefficient κ2. Accordingly, the solutions found above in the

intermediate and asymptotically large regions are still valid. It can be shown that the

x → 0 solutions (3.25), (3.26), (3.27) are also unaffected. In physical terms, the inclusion

of the fermion dynamics via the Thomas-Fermi approximation gives rise to ordinary Debye

screening. This screening is subdominant compared to other screening effects in the con-

densate (see [2]). Moreover, the profile of A0(x) away from the core and within the halo is

very shallow, giving rise to a very mild dependence of the charge density on x. Hence, the

latter can be approximated by a constant, as was done in the previous sections.

The Thomas-Fermi approximation does not capture the possibility of exciting gap-

less modes near the Fermi surface. To include this effect we must calculate the one-

loop correction to the gauge boson propagator. In other words, we must include in the

Lagrangian (2.1) the fermion kinetic, mass and chemical potential terms and take into

account the known one-loop gauge boson polarization diagram when calculating the gauge

boson propagator. This was done in the second reference in [2] and we use those results

here in what follows.

The one-loop correction to the gauge boson propagator gives corrections to the static

potential A0. We are interested in how this correction compares to the potential found in

the intermediate region of the vortex (3.23). To estimate its magnitude, we consider a toy

model of the vortex. We find the potential due to a wire of constant linear charge density

λ0 located at r = 0. The linear charge density of this wire is set by the characteristic charge

of the vortex: since the scalar charge density varies significantly from its condensate value

eJ0 at scales r < 1/M , it follows that at short distances the linear charge density of the

vortex can be approximated by

λ0 =
eπJ0

M2
. (4.3)

At large distances the vortex is effectively neutral, as mention above. Thus we expect the

one-loop contribution to the static potential to be irrelevant at large scales.

In three dimensions, the charge density of the source is given by

J source
0 (r, θ, z) =

λ0

πr
δ(r) . (4.4)
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The static potential is determined from this source and from the {00} component of the

gauge boson propagator D00:

A0(r) = −
∫

d3r′ D00(r − r′)J source
0 (r′) . (4.5)

The propagator was found in the second reference in [2]:

− D00(ω = 0,k) =

(

k2 + m2
γ +

4M4

k2
+ F (k2, kF ,mf )

)−1

. (4.6)

The function F (k2, kF ,mf ) is due to the one-loop photon polarization diagram. It includes

both the vacuum and fermion matter contributions. Here kF denotes the Fermi momentum

and mf the mass of the fermion. A complete expression for F (k2, kF ,mf ) can be found in

ref. [10]. We take the expression for F (k2, kF ,mf ) in the massless (mf = 0) limit, which

is a good approximation for ultra-relativistic fermions:

F (k2, kF ) =
e2

24π2

(

16k2
F +

kF (4k2
F − 3k2)

k
ln(

2kF + k

2kF − k
)2 − k2 ln(

k2 − 4k2
F

µ2
0

)2
)

. (4.7)

Here µ0 stands for the normalization point that appears in the one-loop vacuum polariza-

tion diagram calculation.

The function F introduces a shift of the pole in the propagator, corresponding to

the“electric mass” of the photon. This part of the pole can be incorporated via the Thomas-

Fermi approximation, as was done above. In addition, however, the function F also gives

rise to branch cuts in the complex |k| plane (see ref.[11] for the list of earlier references on

this). These branch cuts give rise to the additional terms in the static potential which are

not exponentially suppressed, but instead have an oscillatory behavior with a power-like

decaying envelope. In a non-relativistic theory they’re known as the Friedel oscillations [11].

In the relativistic theory they were calculated in refs. [10, 12]. We have calculated them

in ref. [2] for the relativistic theory in the presence of the condensate: taking the Fourier

transform of (4.6), the dominant contribution due to the branch cuts is

− D00(r̄) =
αem

π2

k5
F sin(2kF r̄)

M8r̄4
. (4.8)

Here r̄ represents the 3D radius in spherical coordinates, as opposed to the 2D radius r.

Using this expression together with expression (4.4) in equation (4.5), the correction

to the static potential is

A0(r) =
αem

π2

λ0k
5
F

M8

∫ ∞

−∞
dz′

sin(2kF

√
z′2 + r2)

(z′2 + r2)2
. (4.9)

An upper bound on the potential can be found by taking sin(2kF

√
z′2 + r2) → 1. After

integrating, this gives

A0(r) <
αem

π2

λ0k
5
F

M8

π

2r3
∝ π2

e2

√

kF

mH

1

m2
Hr3

. (4.10)
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On the vortex solution, the leading term in the potential in the intermediate region is

given by expression (3.23):

A0(r) =
mH

2e
(B(r) − 1) ≃ 1

4emHr2
. (4.11)

Given that both kF /mH ≪ 1 and 1/(mHr) ≪ 1, we see that the one-loop correction to

the potential (4.10) is greatly suppressed compared to the potential found in the vortex

solution. Thus the excitations of the fermions do not significantly alter the vortex solutions.

One further effect that we take into consideration is the Landau quantization of the

fermion energy levels due to the presence of the magnetic field in the interior of the vortex.

In the presence of an applied magnetic field, the separation between the Landau levels is

given by ω = eH/mf where H is the magnetic field and mf is the fermion mass. Near

the core of the vortex where H ≃ m2
γ/(2e) the separation of levels of the fermions is

ω ≃ m2
γ/mf . Since the photon mass mγ is generally much smaller than the fermion mass,

this shift in energy is negligible compared to the typical energy of the fermions.

5 Energetics and external fields

We now turn to the question of when it is energetically favorable to form a vortex in the

charged condensate. We start by comparing the average energy density of the vortex to the

energy density of the pure condensate. Above, using Gauss’s law, we found that inside the

distance x = 1 the vortex has a small negative charge density implying that in this region

the average scalar number density is lower than in the condensate phase. At distances

x ≫ 1 this charge density is exponentially suppressed indicating that the net charge of the

vortex is zero and thus the total average scalar number density is the same in both the

vortex phase and the condensate phase. In calculating the average energy density of the

vortex inside the distance x = 1, we are not interested in the contribution to the energy due

to the discrepancy in the number of scalars between the vortex phase and the condensate.

This contribution to the overall difference in energy vanishes at large distances. Thus we

calculate the energy density of the system using H′ = H − µsJ
scalar
0 . The additional term

effectively subtracts off the energy density due to the scalar number density. We compare

H′ in the vortex phase to H′ in the condensate.

The Hamiltonian density H′ can be calculated from the Lagrangian L′ (2.2):

H′ =
1

2
H2 +

1

2
E2 +

1

2
(2eA0 + µs − α̇)2σ2 − µs(2eA0 + µs − α̇)σ2 , (5.1)

We have simplified the Hamiltonian using the equations of motion (2.3), (2.4) and have

taken boundary terms to be negligible. The magnetic field H and the electric field E are

defined as usual

H =
1

r

d

dr
(rAθ) , E = −dA0

dr
. (5.2)

The fourth term in the Hamiltonian is exactly −µsJ
scalar
0

as we would expect. The third

term is due to the energy of the scalar field. Unlike in the abelian Higgs model, the energy
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density of the scalar field in the center of the vortex, i.e. in the “normal” phase, is lower

than in the condensate phase. However, the energy density of the vortex is still greater

than that of the condensate alone, due to the gradients of the scalar field and due to the

intermediate region 1/
√

κ ≪ x ≪ 1 in which the values of both the potential and the scalar

field are greater than their condensate values. This contribution to the energy density is

roughly equal in magnitude to the contributions coming from the electric and magnetic

fields. On the condensate solution, the Hamiltonian density is identically zero: H′
CC

= 0.

For large x, deviations away from the condensate are exponentially suppressed and

thus differences in energy between the two phases are negligible. So to find the average

energy density within the vortex, we integrate the Hamiltonian density over an area of

radius x = 1 and then divide by the total area. The average energy density within the

radius x ≤ 1 is

ǫave =

∫

1

0

2x dxH′ . (5.3)

The Hamiltonian density can be further simplified using the equations of motion (see

ref. [13] for more details). In terms of the dimensionless variables defined above equa-

tion (5.3) becomes:

ǫave =
1

2
mHJ0

∫

1

0

x dx (B(x) − 1) (3 − F (x)2) . (5.4)

For the region x < 1/
√

κ we use solutions (3.26) and (3.27) and in the intermediate

region 1/
√

κ < x < 1 we use solutions (3.23) and (3.24) with the coefficients found from

matching (3.32). Upon integration, the average energy density is

ǫave =
mHJ0

4κ2
(log κ + 14) . (5.5)

The numerical coefficients should not be taken too literally given the approximations made

in obtaining the solutions which yield the above result. However, the overall scaling of the

energy density ǫave ∝ mHJ0(log κ)/κ2 is remarkably independent of the matching radius

and other details of the solutions. As the energy density of the condensate is effectively

zero (H′
CC

= 0), the above expression represents the difference in energy between the two

phases.

To see when it is energetically favorable for the condensate to form vortices, we now

consider placing the condensate in an external field Hext pointed along the z-axis. We

shall see that the magnetic properties of the charged condensate resemble those of a su-

perconductor. In particular, when κ ≫ 1, the charged condensate resembles a type II

superconductor. When an external magnetic field Hext is applied to the condensate, below

a critical value Hc1 surface currents oppose the penetration of the field and the induction

Bind is zero in the bulk of the condensate. For Hext > Hc1 magnetic flux penetrates the

condensate in the form of vortices. At another critical value of the magnetic field Hc2 the

normal phase is restored and the induction Bind is equal to the applied field Hext. In what

follows we determine the critical values of the fields Hc1 and Hc2.
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Given the energy density ǫ of the vortex phase above the pure condensate phase, we

can find the value of the magnetic field Hc1 at which it becomes energetically favorable

to form vortices. In the absence of an external field, it is never energetically favorable to

form vortices as the energy density of a vortex is greater than that of the pure condensate.

In the presence of a small external magnetic field, below Hc1, the condensate must expel

the magnetic field entirely from its bulk in order to remain in the condensate phase. This

requires energy; the energy per volume needed to expel the external field is 1

2
H2

ext. If

vortices form in the condensate then the energy required to expel the magnetic field is

smaller than if the field were to be completely expelled. More specifically, if the vortices

give rise to an average magnetic field in the condensate Bind, then the energy needed to

expel the remaining magnetic field would be 1

2
(Hext−Bind)

2. The energy gained by forming

vortices is the difference between this energy and the energy required to expel the magnetic

field entirely. Assuming that Bind is small compared to Hext near the transition point, this

difference can be approximated by 1

2
(2BindHext). Thus for a high enough external field, the

energy ǫ lost in creating a vortex is compensated by the energy gained in expelling a smaller

magnetic field BindHext. In order for formation to be energetically possible, we must have

ǫ ≤ BindHext. The equality determines the critical external field Hc1. (See ref. [5].)

Suppose the number of vortices per area in the condensate is given by N . Then the

energy density due to the formation of vortices is given by ǫ = Nλ where λ is the energy

density per unit length of a vortex. Using ǫave found above (5.4) as the energy density of

a single vortex,

λ =
π

m2
γ

ǫave . (5.6)

The induction Bind is given by

Bind = N

∮

A·dl =
2πN

2e
. (5.7)

Combining these expressions, the critical field Hc1 = Nλ/(Bind) is given by

Hc1 =
m2

γ

8e
(log(κ) + 14) . (5.8)

The final expression for Hc1 is independent of the number density of vortices N . It follows

that if it is energetically favorable to create one vortex, then it will be even more energeti-

cally favorable to create many, up to the point than interactions between vortices become

significant. At distances greater than r = 1/mγ we expect fields outside the vortices to

be exponentially suppressed and thus the vortices to be effectively non-interacting. So at

the transition point Hc1, it is likely that the number density of vortices is of the order

N ≃ m2
γ/π.

If we take J0 ≃ (0.15 − 0.5 MeV)3, a reasonable value for white dwarfs, this gives

a magnetic field of roughly Hc1 ≃ (107 − 109) Gauss. Thus, the vortex lines should be

expected to be present in the bulk of the helium-core white dwarf stars with strong enough

magnetic fields.
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A sufficiently high magnetic field will disrupt the condensate entirely. One way to

approximate the magnetic field at which this transition occurs is to consider the density of

vortices in high external magnetic fields. When the cores of the vortices begin to overlap,

then the scalars are mostly returned to the normal phase. We define the core of the vortex

to correspond to x = 1/
√

κ, or equivalently, r = 1/M as this is the region in which the

VEV of the scalar field drops to zero. As N is the number of vortices per area, at the

transition point N ≃ M2/π. We define the critical external field at this point to be Hc2.

When the condensate enters the normal phase, the induction Bind is equal to the external

magnetic field Hc2 = Bind = 2πN/(2e). From these two expressions we find Hc2:

Hc2 =
M2

e
. (5.9)

For J0 ≃ (0.15 − 0.5 MeV)3, Hc2 ≃ (1013 − 1015) Gauss. This is well above the values of

the fields expected to be present in a majority of white dwarf stars. Thus the external

magnetic field is unlikely to be large enough to push the condensate into the normal phase.

We note that both Hc1 and Hc2 given above were determined at zero temperature.

Generally, we expect these expressions (5.8), (5.9) to be valid at temperatures well below

the condensation temperature.

Finally, in type II superconductors the dependence of the critical temperature on the

magnetic field is well-approximated by T ′2
c /T 2

c ≃ (Hc − H)/Hc, where T ′
c is the transition

temperature when the magnetic field H is present. We expect a similar relation to be valid

in our case too. Hence, as long as the value of the magnetic field is not too close to either

critical value, the change of the transition temperature due to the magnetic field should be

small. Near the critical values, however, the change of the phase transition temperatures

(from the normal to the vortex phase and from the vortex phase to the phase with no

magnetic field) could change significantly. The would-be crystallization temperature will

also change, and the charged condensation may or may not be favorable for close-to-critical

magnetic fields.2

6 The low energy effective Lagrangian

For a system of helium-4 nuclei and electrons, one can consider a non-relativistic effective

Lagrangian for the order parameter Φ, as the helium nuclei are non-relativistic in the

condensate phase. This Lagrangian is less restrictive than the relativistic Lagrangian in

that it is not required to be Lorentz invariant. The non-relativistic Lagrangian must give

rise to the Schrödinger equation for the order parameter in lowest order in the fields and

it must respect the appropriate symmetries of the physical system, including translational,

rotational and Galilean symmetries as well as gauge invariance. (See [2, 3] for more details.)

Such a Lagrangian was initially proposed by Greiter, Wilczek and Witten in the context

of superconductivity [15]. We used it here to describe the charged condensate:

Leff = P
(

i

2
(Φ∗D0Φ − (D0Φ)∗Φ) − |DjΦ|2

2mH

)

, (6.1)

2For discussions of other magnetic field effects in very highly magnetized white dwarfs, see [14]
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where D0 ≡ (∂0 − 2ieA0), Dj ≡ (∂j − 2ieAj), and P(x) is a polynomial function of its

argument. We could introduce a chemical potential for the scalars into the argument of

P(x) in the form µNRΦ∗Φ. The relationship between the relativistic chemical potential µs

and the non-relativistic chemical potential is given by µs = mH + µNR. Thus the neutral

condensate where 〈A0〉 = 0 and µs = mH corresponds to µNR = 0 (assuming that the

quartic and other interactions are neglected). Again, one could also include a quartic term

λ(Φ∗Φ)2. However, as long as m3
H ≫ λJ0 and λ . 1, this term can be neglected.3

In the condensate where the VEV of Φ is nonzero, we can express Φ in term of a

modulus and phase: Φ = Σ exp(iΓ). Written in terms of fields Σ and Γ, the effective

Lagrangian (6.1) takes the following form:

Leff = P
(

(2eA0 − ∂0Γ)Σ2 − 1

2mH
(∇jΣ)2 − 1

2mH
(2eAj − ∂jΓ)2Σ2

)

. (6.2)

The gauge field couples to the electron density as −eA0J0, thus we include this term in the

Lagrangian (6.2). Once again we work in the unitary gauge and set Γ = 0. The equations

of motion which follow from (6.2) then have the following static solution:

2eΣ2 = eJ0 , Aµ = 0, P ′(0) = 1 . (6.3)

The above solution describes a neutral system in which the helium-4 charge density 2eΣ2

exactly cancels the electron charge density −eJ0. Since on the solution the argument

of (6.2) is zero, the condition P ′(0) = 1 is satisfied by any polynomial function for which

the first coefficient is normalized to one: P(x) = x + C2x
2 + ....

The condensate solution sets a preferred Lorentz frame. We consider the dynamics of

small perturbations above this background. We express Σ in terms of a perturbation τ

above the condensate value:

Σ(x) =
√

mH

(

√

J0

2mH
+ τ(x)

)

. (6.4)

The Lagrangian, including the gauge field kinetic term, expanded to second order in fields

becomes:

Leff = −1

4
F 2

µν − 1

2
(∂jτ)2 +

1

2
C2mHJ0m

2
γA2

0 −
1

2
m2

γA2
j + 2mHmγA0τ . (6.5)

We can compare this Lagrangian to the one obtained from the relativistic theory (2.2)

by enforcing Lorentz invariance, i.e. by demanding that the “electric” mass of the gauge

field be equal to the “magnetic” mass. This would fix the value of C2 = 1/(mHJ0). With

this value of C2, the Lagrangian for small perturbations above the condensate in the non-

relativistic theory is identical to the Lagrangian for small perturbations in the relativistic

theory found in ref. [1], up to a time derivative for τ .

However, we do not in general expect that the low energy effective theory will obey the

Lorentz invariant condition C2 = 1/(mHJ0). Instead, C2 must be fixed by the particular

3The chemical potential and quartic terms would have to be retained if we were to discuss temperatures

near the phase transition point.
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physics of the system. It’s worth noting that even if C2 were to be fixed via Lorentz

invariance, introducing fermion dynamics via the Thomas-Fermi approximation introduces

an additional term into the Lagrangian (6.5) of the form e2µ
2/3

F A2
0
/π2 which breaks the

degeneracy between the electric and magnetic masses. This is a typical scale by which we’d

expect the electric and magnetic masses squares to differ from each other.

In section 3, in order to find vortex solutions in the intermediate region 1/
√

κ ≪ x ≪ 1

and the asymptotic region x ≫ 1, we treated the electric potential A0 and the scalar field

σ in the linear approximation, but kept higher order terms for the vector potential. Thus

to determine the applicability of the solutions found above to the non-relativistic effective

theory, we should consider higher order terms in Aj than the ones given in (6.5). We also

restore the phase Γ. Given P(x) = x + C2x
2 + ..., the equations of motion to next-to-

leading-order are

−∂µFµ0 = 2e
[

1 + 2C2Σ
2(2eA0 − ∂0Γ)

]

Σ2 − eJ0 , (6.6)

−∂µFµj = 2e(2eAj − ∂jΓ)Σ2 , (6.7)

−∇2Σ =
[

2mH(2eA0 − ∂0Γ) + 4C2mHΣ2(2eA0 − ∂0Γ)2
]

Σ − (2eAj)
2Σ . (6.8)

If we take Σ =
√

mHσ and C2 = 1/(mHJ0), then the first two equations of motion

above (6.6), (6.7) are the same as in the non-relativistic case (2.3), up to second order

in small fields. The third equation (6.8) has an extra factor of (2eA0)
2Σ compared to

equation (2.4). However, since this term is second order in A0 and we treated A0 in the

linear approximation, this does not alter our solutions in the intermediate and asymptotic

regions. Thus for C2 = 1/(mHJ0), the vortex solutions found above for x ≫ 1/
√

κ are

also solutions for the non-relativistic effective theory. As we mentioned above, however,

we would expect the realistic value of C2 to be different from the one we used by the

quantity (e2µ
2/3

F /mHJ0m
2
γ). However, as we have shown in section 4, such corrections are

subdominant because the value of the photon electric mass is smaller that the value set by

the scale M .

As in the relativistic case, the solutions formally break down near x = 1/
√

κ when

the change in the scalar field becomes of order 1 and thus the linear approximation is no

longer valid. More realistically though, we do not expect the effective field theory to hold

at distances shorter than the interparticle separation x ∝ 1/κ1/3. Instead it will cease to

be a valid description of the physics before reaching x = 1/
√

κ.

We can use the non-relativistic formalism to consider the effects of the rotation of a

white dwarf star on the magnetic field in its interior.4 In this formalism the scalar number

density and current density are given respectively by:

J scalar
0 = Φ∗Φ , J scalar

j =
−i

2mH
[(DjΦ)∗Φ − Φ∗(DjΦ)] . (6.9)

The number density is related to the current density by J scalar
j = J scalar

0 vj where vj is the

velocity vector of the rotating scalar particles. Using the change of variables defined above,

4We thank Daniel Stein for raising this issue.
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Φ = Σ exp(iΓ), we can use these expressions to find vj:

vj =
1

mH
(2eAj − ∂jΓ) . (6.10)

This known result is notably different from that of a superfluid in which the scalar field

does not couple to a gauge field. In the absence of the Aj term in the above expression, one

would conclude that ∇× v = 0 and thus the scalar condensate does not support rotation.

Instead, in the presence of the gauge field we find

∇× v =
2e

mH
H . (6.11)

The magnetic field H is called the London field [16].

The velocity vector v can be written in term of the angular velocity v = Ω × r. It

follows that, for constant Ω, the rotation of v is given by ∇ × v = 2Ω. Accordingly, the

magnetic field can be expressed in terms of the angular velocity:

H =
2mH

2e
Ω =

2eJ0

m2
γ

Ω . (6.12)

Here J0 is the fermionic number density. Thus the condensate of helium-4 nuclei can rotate

with the rest of the star, unlike a neutral condensate. The consequence is a small, constant

magnetic field in the bulk of the condensate.

Varying the Lagrangian (6.2) with respect to Aj gives 2eJ scalar
j = eJj , where Jj is the

fermion current density. Using Jj = J0vj , it follows that the fermion velocity vector is

equal to the scalar velocity vector. The electrons and the helium-4 nuclei rotate together

in the core of the star. At the surface however, there is a thin layer of helium-4 nuclei that

is slightly out of rotation with the rest of the star. This feature becomes evident upon

finite volume regularization of the system. The thickness of the layer is roughly 1/mγ .

This surface layer is what gives rise to the London field in the interior of the star [17].

To estimate the value of the London field we take the angular velocity of a helium white

dwarf star to be Ω ∼ 10−2 Hz. The resulting London field is H ≃ 10−6 Gauss. This field is

present even in the absence of vortices. However, it is too small to affect any of the results

given above.
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